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NATIONAL ADVISORY COMMITTEE. FOR AERONAUTICS
TECHNICAL MENMORANDUM NO,- 1030

" THE COMPRESSIBLEZ POTENTIAL FLOW PAST ELLIPTIC
'SYMMETRICAL CYLINDERS AT ZERO ANGLE OF ATTACK
AND WITH NO GIRCULATION* -

By W, Hantzsche and H, Wendt

For the tunnel corrections of compressible flows
those profilec are of interest for which at least the
second approximation of the Janzen-Rayleigh method can Dbe
applied in closed; form. One such case is presented by
certain ellipsaidal symmetrical cylinders located in the
center of a tunnel with fixed walls and whose maximum ve--
locity, incompressible, is twice the velocity of flow.

In the numerical solution the maximum velocity -at the
proflle and the tunnel wall a%s wpll as the entry of sonic
velocity is computed. . . e

The.velocity distribution past the contour and in’
the minimum cross section at various Mach numbers ig il-
lustrated on a worked out-example.

INTRODUCTION

The method of Janzen (reference 1) and Rayleigh (ref-
erence 2) for the step-by-step calculation of subsonic
compressible potential flow from the incompressible flow
was in original form applied only to flow past the circu- .
lar profile and to the sphere in free air. Poggi modified
the solution of the boundary value prodblem for two-
dimensional flows 80 as to make the method equally appli-
cable to other simple profiles (reference 3). The math-
enmatical task is largely confined to the determination of
the velocity or pressure distribution on the profile.

For the solution of the second step (development of the
potential to the auadratlc term of the Mach number), Imai

*"Die kompressible Potentialstrﬁmung um eine Schar von_
nlchtangestellten symmetrischen Zylindern im Kanal,
Luftfahrtforschung, vol, 18, _no. 9, Sept,. 20, 1941
pp. 311 316 ) S ‘
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and Aihari (reference 4) hayve indicated a method by intro-
ducing the variables =z and 2z instead of x and y
previously employed by Busemann (reference 5) in his
treatment of the incompressible flow, which enables the
obtainment of the potential in the entire field even for
more complicated cases. By way of application Imai and
Aihari calculated the flow past an ellipse in free air,
In @%ﬁ%%%@?téﬁﬁﬁaplan’s calculation patterned after Poggi
(reference 6) for the ellipse at zero angle of attack and
with no ecirculation, which requires the series, the solu-
tion can be given in closed form.

For flows in the tunnel only the second approximation
about an almost circular contour by E, Lamla (reference 7)
is available. He used the method of Janzen and Rayleigh,
with the incompressible flow produced by superposition of
a parallel flow with a doublet and its reflections at the
tunnel walls as first approximation.

The present report deals with the second step for
the incompressible flow about a group of ellipsoidal cyl-
inders in the tunnel. The profile curves are denoted by
circles after conformal transformation of the strip
bounded by two parallels, mapped on a plane sectionalized
aleng a semistraight line., In incdmpressible flow the

cylinders have for each thickness ratio <EEE£§£§§£
chord

double the flow velocity as maximum velocity. The dif-
ferential equation is integrated according to Imai and
Aihari.

I. DIFFERENTIAL EQUATION OF THE FLOW

The potential ¢ (x, y) of & stationary, nonrota-
tional two-dimensional compressible flow satisfies the
differential equation of the gecond order: 

2 4 o 2N -
Oxx (1= 55) - 20yy T+ 0y (1 -2)=0 (D)

where u = dy, Vv = 0y inﬁipép?}'respéctivkly) the com~
ponents of the velocity along the x- and y-axis of a
rectangular system of coordinates x,y and  a- the soniec
velocity, This is a function of wu,v; with a, as sonic

velocity and U as the flow velocity at infinity we get

=



funetion of z = x + iy: &, = Re f(z)
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P B -‘éa-oo:, K ; 1 (g2 y2 - yoy o (,2.)

Equation (1) can be written in the form

Oxx ¥ byy = aa (00 0% + 20505 0xy *+ Sy °1 - (3)

- Envisaging the potential de&eloped along the Mach number
M U

8co.

d = 9o + Py Ma + . -

equation (3) affords differential equatioﬁs of the form
Ady = O ' (4)
2 2
8o, = 25 {(@gm(@o)x+2<@o>x<<po)y<q>o)xy+,(@o)yy<q>o>y } (5)

®o 1is the potential in 1ncompre351ble flow; the deter-
mination of @, represents the second step of the Janzen-

Rayleigh method of approximation., As potential of an in-
compressible flow ¢, is the real part of an analytical

f(z) + £(z),
: )

£(z) iscthegconjugate complex value of f(z),.
% . .daf 1 LAt
&y = = - = ¥
.(QO)X-,,.TEU_ZU. 2. [dz : ]
(Qo)y = - dn iz ~ [ dz dz] a
£ 2

' . a%r 1 [a®fr . a®f
(Qo)xx B*—‘d.za 2 [dza dza]

With

(0.} - - 3 a2 1 [ aPr - a%f
Polyy. = = 2B 3,8 = 23 |~ dz2 T az®
azrs 1 | a®rf azs]

= - R = - - + =
(20)yy 28 3g2 2 [dga az2 |
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the fight—hand side of eqﬁéiidﬁ'(5)féan be formed to read:

3 dzf af\
2U2 d.za

"The equation for @1 assumes the form

= 1 a%f
%o U= Be - az2 ) } (6)
’Introducing the complex variables 2z = x + iy and
Z = x - iy in place of x and y it can be transformed
. 9 o] ) 3 .
s = T + = T o= ——-——.:
with ox oz 0%z and a) Y \Qz 0% to
2
370, L <§f)
dz0% = 4U

\.

the integral of which can be indicated

&, = 7577 Re { j/}<d€> dz + F (z) + G (z)} (7)

The analytical functions F (z) and ¢ (2) are arvitrary,
pending determination by the boundary conditions.

The formal use of 2z and 2% as independent vari-
ables still requires justification.

The conjugate complex value f(z) of the analytical
function f(z) 1is no longer an analytical function of Z,
while f(z) is -obviously analytical in =z.  To express
this we write

£(z) = £(7) - . (8)

Since dz = 4%, the derivatives of f with respect to
¥ become B ' '
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df(zi - df(zl 2f(z) ;‘dz?Y?) , (9)
gz 4w odg - A% ...

ii whence equation (6) can be written
8-t
E
[ : a
= AB. = 1|4 fﬁz) ( + f <df(z) . (10)
q’l 2U2 [ .
Permitting the independent variables x and y to
assume temporarily any complex values x, + ix; and
¥1 + iy=, then f£(z), £(Z) and @ ostensibly become
analytical functions of the two complex variables x and
v. Then the substitution of the independent variables
Z, = x + iy
and Zp = X - iy
for x and y changes equation (10) to
2%0, _ 1. [a®%(zp) df(zl)>3 L 42£(z,) (af(eg)\?
azlaZZ 8U2 dZaa d.Zl dzlz d.22
So for @4 wélget
1 [4F af(z,)\?
®y = 5 L (z5) ( ( )> dz,
8y dzs dz,
4 8f(z3) (df(22)> dz, + 2F (z,) +‘2G(23)J (11)
‘ d21 d.Zz e . o
with F (z,) and G (z5) indicating the analytical
functions of z; - and 1z, respectively. Again limited
to real x and y affords =z, =z and zp = 7. Taking
= .. moreover the real part of equation (11) so as to secure a

real solution of equation (6), the final ' expression
(equation (7)) with due account of equations (8) and (9)
reads:

3, = 4U3 _g‘f:fI:I‘//)( ) dz + ¥ (z) + G (?)}
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If the potential is referred to the complex coordi-
nates { and [ of a (- plane tled to the xy-plane by
the conformal transformation = §(z), then @&, assumes

the form

o1 = 4U \at ax=

faf _L{/f’( %& at + ¥, (L) + Gl(fd} (12)

Conformal transformation is usually resorted to for
reagons of easier compliance with the boundary condition
that the derivation of @, normal to the profile contour

should disappear.

The differential equation for the second term of the
stream function in the development along the Mach number
can be transformed in analogous manner,

The stream function V(x,y) of a two-dimensional
stationary nonrotational compressible flow meets the dif-
ferential equation

. (} —-—~—> 2Upy B+ Vyy (? - ~i =0 (13)

with up = pPg wy and vp = - p_ Yy the components of
the stream density.

With Y =y, + WlMa + ... (Wo stream funetion of
incompressible flow) equation (13) affords for VY, the

differential equation

= ( ) (Yo)3 5 ) (Woldx (o dy + Lygli
Volxx ye - (Wo Xy ye wo)yy g2 .
whence the introduction of 2z = x + iy and % = x - iy,

if oy, = dn f(z), gives

__,_n_{ 21(z) (df(z)> 1

- - 1
(Wl)zf - 4082

or
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v ey (EE f(.zL_l ar % Fa(o) ¢ e} (1)

A comparison of equation (7) and equation (14)
shows that the complex functions occurring at ¢, and ‘Wﬁ

behind the sign Re and dm differ only in the terms
added by the boundary conditions. .

II. INCOMPRESSIBLE FLOW IN THE TUNNEL

We proceed from an arbitrary symmetrical profile at
zero angle of attack placed in the center of a channel
with fixed walls. The flow of the entire plane obtained
by reflection at the tunnel walls is referred to a system
of rectangular cartesian coordinates x, y, the x-axis
of whiech is located at tunnel center. The tunnel height
can be chosen equal to 2m without limitation of gener-
ality. If 2 = x + iy again indicates the complex co-
ordinate in the xy-plane, the complex potential of the
flow is an analytical function £(z), which at infinity
acts as Uz (U = flow velocity) and otherwise has singu-
larities only on the inside of the profile; f(z) is a

simple periodic function with the period 2mi. Then the
transformation (' = e? maps the z-plane into the com~-
plex (' = £! + in'-plane and each strip parallel to the

x-axis of width 2w covers the entire plane. Consider-
ing the strip - 7S y< ™ 4in particular, we find the
tunnel walls y = - 7 and y = m changing to the twice
traversed negative £ '-axis. The line of ‘symmetry of the
tunnel becomes the positive §'-axis, the symmetrical
profile changes t0o one symmetrical to the g‘—ax1s. The
infinitely remote point of the z-plane is reflected in

the zero point and infinitely remote point of the {Y-plane.

From the behavior of f(z) for =z = o it follows that in
the vicinity of (' = and ' = o, f£({') acts as. .
Uln §{'. Aside from these two points the function has no
singular-points outside of the profiles; f({') is there-

 fore the potential of the flow in the’ §‘—plan9 produced

by a sourée with-the yield -2wU. in.the zero point. The
profile and the {'-axis are streamlines. .

Concentrating on the group of profile contours-in
the tunnel which the transformation (' = eZ maps into
circles, the complex potential £({') 4is readily.
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indicated by~ref1ection:oﬁ'thelbirqle? :

:(gt) =_U_ln g"?ggv-bb+ c) (15)

if b is the center abscissa of the cirele of radius a

a<
a = &Z.
an c B

The family of profile curves in the tunnel is shown
in figure 1l a.

These profile curves are symmetrical with the median
line of the tunnel and at right angle to it, as is readily
seen from figure 1 b conformable to the chord-tangent
theorem. The highest point of a profile curve in the
{1-plane is given by the contact point of the tangent
placed on the circle from the origin of the coordinates.
Obviously the same profile curve is obtained for values
of a and b with constant ratio 2 wup to a parallel
displacement along the tunnel axis. Thus keeping the
center distance. b fixed while varying the radius a
from zero.to b:.affords the whole group; the position
shown in figure la then is obtained by parallel shifting
of the 1nd1vidual curves. The relationship of dlsplace—
ment ratio to thickness ratio of the profile curves 1is
indicated in figure 2. The maximum velocity follows
from
af- dg' _ af .

Sl s ‘?i_ﬁ'f'

Qalp'
N |y

for the contact: p01nt of the tangents

, N/——————./‘—’—”%

b

*To find the flow representéd by . £(¢') if the profile

in the ¢{'-plane is not yet .a circle, the outer zone of

the .profile would have to be mapped onto the outer zone

of a circle of a complex- z'!'-plane. Of the conformal
transformation it is demanded that it be symmetrical to

the {'-axis, that is, the {'-axis becomes .the x'-axis
and the infinitely remote point of the {'-plane is

mapped in that of the z‘~p1ane. Then the flow in the
z'-plane again becomes the flow of a source about a circle..
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with allowance for equation (15) at

af :
— —-— 3 3 2
iz a iv U

hence the maximum velocity is always twice the flow ve-
locity, as is readily understood for the two extreme
cases a->0 (sphere in free air) and a->b (very long
plate of thickness %- in tunnel of height h). :

III. COMPRESSIBLE FLOW IN THE TUNNEL

In the following the circular plane is referred to
a coordinate system { = {' - b through the center of
the cirele.

Then the complex potential (equation (15)) has the
form

£(t) = U 1n L& ¥ b)c(g * o) (16)

t

whence the incompressible veloeity potential

(¢ + b)g(; + ¢) (175'

(S
[a]

1
v
L}
~

ue
]
)
(o}

2e Re In

?he additional potential o, is according to eguation
12) - :

oy = %’E_.{f bg-%p ¢
&

+ bd 1ln

b ln‘(é + b)

+

-

b2
¢

¢
¢, b -¢c) b ~-c)

+
T T+ c) Q(f te)

» o = edd g, + (b - c) in (§ + b)
§+ @ e T PR g 40
(b - ) dln (L + o) (v - c)?
t*oe (g +e) (T + )

+

P, (L) + 0y (Z)}  (18)
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with 4

il
!

Because of the conformal transformation of the
z-plane into the {-plane ({ = r el®) the boundary con-
ditions in the {-plane can be easily indicated.

1. .. The disappearancé of ‘tHe normal component of the
velocity on the profile of thé xy-plane stipulates that
the derivation of @, mnormal to the ciréle r = a in

the {-plane be zero:

@) -

r=a

2. The tunnel walls must be streamlines, hence the

elo)
derivation SE% on their corresponding part of the neg-
ative £ -axis must disappear:

5<I>1>€< v

3. The additional velocity at infinity must become

zero in the plane of the tunnel, In point ¢ = - b and
§ = ® the expressions
00, 00, 0y
—_— = R + b +———J + b
dx - ot Re (L ) an (L )
and
0d, 00, In (t+ b) + 00,

Re (f{ + b)

oy ot

must therefore disappear,

4, Ag the flow is to be without circulation, the

: : . 0P
.derivative

for { = £a must become zero:
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(o¢ﬁ —o. (b¢ﬁ
0 [t== o9 e——m

n=

The functions F; ({)
and -G, ({) - should be so de-
fined that ®; ({) complies
with the conditions 1, 2, 3,
and 4, and that the velocity
field ia the xy-plane has no
singularities outside of the
profile at finity

It then affords for @,

Fo
i fe]

;-

1030 11
The procedure of estah-
lishing ¥, ({) ana &, ()
is given elsewhere. The ex- 1(d%v:/fﬂ

istent integrals are 1n¢eber
pinat® integrals, since a con-
stant amounts to nothing at
the potential. The integra-
tions are easily carried out.
They were omitted here because
it makes the expressions more
complicated and i1s moreover
unnecessary for the predic-
tion of the veloclity field.

ln +b dc
_p|n(Et+d) .
b[ z j}’(h+b3*lf ]

ln +c aZ
In(¢4¢) 2
+bd[ C —a fcz(az_*_cg +f ]

In¢ ln——d?;
+‘b”‘°)d[z+c_fr:(c+c) +f TFor ]
AN X (s ol B
+ c)[ et

£déf

ln——
“2f<2+bf)(c+c)+j7 c+c)== ]

19)

gt
© ")"l[ T+e I(H—c @ Fel)

In |—=
Wi ean

_'(b_”z[( A ET +f(c+c

—b—a [

ln —Fﬂ
E4b dt
e "_fa2+bc+j dHlan C']

tdi .
@Feot) +f(s+c>= <a=+c'c')] \

N

df II

a®In b—g—z— C
e—n @[m@+m+_ ( })_ﬁj°

Ete

te f(=+ g af+in ”“J(,+c)'] J

%abnw+w—4np+m@+wq} ............... |

_ 5
— (13—

c(a2+cé‘)

(a2+bf) (a*+¢?) '

&
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So far the boundary condi-

tions 1 have been met without

taking the others into account..
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the individual terms of equa-
tion (18),
terms in equation (18) together

The two underscored

This was carried out separately are purely imaginary, hence may

for each term on the right-hand be omitted.

side of equation (18).
on the right-hand side has the
form Re (n(t) x(T)) anda fur-
nishes as constituent to the

radial for

r = ai

derivative %%}

Re [ S5k @ o7+ 55 h e emiv]

This term is now a real
part of a function of e¢l®, say,
Re (g(ei¢)). Forming both ex-

pressions
£] . : a
-3 o gl=s
L (i
a Y e
they patently have on circle
r = a the radial derivative:

-Re & (el®) precisely required
for the compensation.

r=a

The choice of either func-
tion is, for the time being,
open; a decision is usually ar-
rived at because only one of the
two functions satisfies the
boundary conditions 2 at the
game time. It therefore seemed
advisable to treat the two addi-

tive components of g (el®) aif-
ferently on many terms.

By the present method of
compliance with conditions 1

1
both the real and imaginary part517wp=—~}lm{~——=——

of function g (el®) at the cir-
cle are compensated, which 1s
not at all necessary.

The first eight lines of
equation (19) indicate the pro-
portion for the additive func-
tions ¥, ({) anda &, () for

These were in-

One termcluded in equation (18) only
because of the parallel to the
stream function, '

The second'boundari condi-

tion <-aa%}->§:_ g

n=0
by all nonlogarithmic terms, be-
cause the expression below the

is satisfied

sign Re derivated with re-
spect t0 ® bDecomes purely im-
aginary. Otherwise it may hap-

pen, for instance, at term

in (%?i b) (third line), that

real proportions remain., To
bring these to disappearance
the two lines of equation (19)
below boundary conditions 2
vere necessary. The expres-
slons are so chosen that condi-
tions 1 are always complied
with,

Lastly, the solution of
the homogeneous equation in the
last line has been given a sui-
table factor. so that conditions
3 are also fulfilled; the con-
ditions 4 are of themselves ful-
filled. -

The equations for the

stream functlon corresponding

to equations (18) and (19) are
bln (é_'-]—b)

3 N3 3
bdln (t-1¢) | b(b—o).

T e

__b(é-——c) (b—c)d
[TFa T ege M¢

L= @4y p—cdin(g+o

Cte Tt
b— c)® )
—Eéﬂ%q+ﬂm+&m}
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with 4 = -A14- grhi as before., 18 identical with the follow-

o - ing-
The underlined terms are real, In< ,“
-+ hence may be- omitted 1“5 - .
. ax
1 Ame 7T | v, _m;__unn:cu. mvu.uu:on
ik —{m [3R3 o ‘ ‘ '
- (% +b '
b{—lll%'hl—’-)-—w(-%——l} The components of the ve-
» . (a2+_)- locity in the tunnel are:
In@+c-_ "\ "° 23 (D ap®i_ Moo
”d{ T T } U—Oz(U+M2U = (H‘ﬂ-_o )‘*‘ Tz
» 1t Ym _ (P, P c__ b\, Mo,
—2b(b— ){ (C—*—c) az(C-i-t!)} U by(U+M U (1+C+c )+U by
et o)
Inf ¢
-—(b—c)d{—r_ll_c—"gq_—c} Only % and % at the profile

2
: In (¢ 5) 1"('%'"1“”) edge are being indicated., To
—b—d |77 - calculate the differential quo-

L d d
(b_c)d{ln_(;_'*‘._c_)__ln(f —{—c) tients a®1 and L 28 wve pro-
fte TFe x oy
In (£ +b = ceed to the polar coordinates
—b(l—d)'{—T——l-iflnb r,p of the circular plane and
note that at the profile
2
ln(g——-l—b)
¢ = Inbd
e 1) o
a®In (b—f) OF /r=a
—(e—b) (1—a) PRleB) ~ 1 b (b‘pi) (0‘151) (atp)
T ¢(a®+el) 0z [r=a 0@ |r=0a \0x[r=0a

ot _a 00,  _ (3 dg
ln(f +b)+ln( b)._é}]. (by’)r=a*(b¢) by)r_a
C 2
‘ag‘“l'c +c, ¢ For (b—:)r=acnd(g—z)r=a smoe ret? 4 p
The boundary condition for _ ~+iv.we have
Y = 0 at the circle r = a was dey __ b . [dp )
complied with by deducting from (ax)r=a ~a S (‘ay)ma + g cose
each .term the expression ob- (bml)gccordingfo(w) has the form:
tained if { or T is replaced | I(OQ)
1. 1
2
by a2 o» 2- as reflected in a Ulde ) s ;
Z g _ 1 ﬂi[bd—-b—-—]*b _21,e"’ —bd -2ie'7
4 al CE+.b) Z(e+ )

the first seven lines of the o 55t
“for. " two —b—dd—mrr—b— T
formula for. V,, the last A (e o) €4d) (C+e)

»>being the remaining dboundary —{—(1;}-31’—2—— B 2067
conditions :in order. If the at) TFb ..
procedure of .the potential fune- d){ 2i6? +2zlnb iy 2ieTIn (C4b)
tion had been followed, it would E(E+0) L ~W e (;;:_b)
nave largely afforded the same - (o (1 d){ ie __2ie%n
terms as these, except with a dif- €48 (E—+e (2R

N 2
ferent prefix in some parts. 2ie“"ln(b—i‘b—)
The first term, for instance, +—(Cq—c)2__ e
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the maximum velocity at the profile in the tunnel is:

u
-%'513-=2+BM2 (21)
with
- oSl 2 2a a2 . -1 a
B =1+ <l + aa> {l + 2 [— b 1 - 52 sin >

-<1-§-§->1n<1~§—:]}

Figure 3 shows the parameter B plotted against the
displacement ratio. For the case of the circle in free

air a—=> 0, %-: O, we get B = %, as it already must be
the case according to Rayleigh's own calculated second
approximation at the circle. For the other extreme

a—>b, %~= 0.5 (very long plate of thickness %- in tun-

nel of height h) we get B = 3. In this case the veloc-
ity between profile and wall is constant. It follows
from the requirement that the stream density is twice as
great as at infinity:

up= 2Up_
or

%= 3 P

U P
The expansion P according to the Mach number M = él-

P co

gives

W2+ 3 Mo+,

U

hence B = 3.

The second curve plotted in figure 3 indicates the
value of B in the narrowest area on the tunnel wall,
when putting:

u = Zik 4+ g y?
U U
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where wuj;), 1is the velocity at the wall in incompressible
‘“flow."ih figur;'4 ﬁﬁé.ggify‘6%Hso;iéréeldcity‘on thé‘pro—
file (critical Mach number of flow) is-plotted .against the
displacement ratio. "The.critical Mach number is obtained

from equation (21) by putting —%?5-= %r-(a* = eritical

velocity), -

Figures 5 and 6 show the velocity distributions on
the profile and in the narrowest part of the tunnel plot-.
ted against the Mach number of the glow. The profile 3
of figure 1la with thickness ratio e 0,761 and dis-

placement ratio % = 0.356, was chosen as cylinder.

Translation by J. Vanier, -
National Advisory Committee
for Aeronautics
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Figure la.8 Group of cylinders explored in tunnel, whose maximum velocity
is twice that of the approaching stream.
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Figure 3.~ Effect of compressibility Figure 4.- Critical Mach number.
on the additional velocity -~
at profile and tunnel wall.
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Figure 5.- Velocity distribution Figure 6.~ Velocity distribution in
along profile of the minimum section for
thickness ratio d -0.761 (4 0.356) profile with thickness ratio 4.0.761
: h (d -0.358). t
plotted against polar angle.
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